In comparison, calculations reveal that emissions from the oil palm industry
are indeed very small. The world oil palm area of 14 million hectares is only
0.25% of global agricultural land. Therefore, the GHG emission from the oil palm
industry is 0.25% x 17% or 0.04% of the total global GHG emission. At the country
level, Malaysia’s oil palm cultivated area of 4.85 million hectares represents
34.6% of the world’s oil palm cultivated area and hence its GHG footprint is 34.6%
x 0.04 % or 0.014% of the global GHG emission. Even doubling the cultivated area
for oil palm in Malaysia would see a negligible increase of its GHG footprint
to 0.028% of global emission.

The negligibly small GHG footprint of the oil palm industry has attracted the
aviation industry operators (hence their presence in Kuala Lumpur for the Forum)
to consider the use of palm oil biofuel to help reduce emission levels from the
aviation industry. As indicated above, doubling the production of palm oil in
Malaysia will not add much to the carbon footprint of the oil palm industry, instead,
it will provide 18 million tonnes or 8.6 billion gallons more of potential jet
biofuel. Total consumption of aviation fuel per year is estimated at 70 billion
gallons. A 12 % replacement of the world aviation biofuel can be achieved if the
Malaysian production can be doubled to cater to this demand.

The road map for inclusion of biofuel in aviation fuel begins modestly with an
initial blend share of 1 % by 2015. This could be increased gradually with an
improvement of 1% additional biofuel in the fuel blend annually so that GHG emissions
will be maintained at current levels despite exponential growth in future global
air travels. Malaysian palm oil potentially fits the road map due to its ability
to replace a moderate (12%) percentage of world aviation biofuel demand. Palm
oil from other sources could also be considered until a long term plan by the
aviation industry to meet its target replacement of 50% blend of biofuel in aviation
fuel is achieved.

Such large demand for bio-renewable aviation fuel can be supplemented if the
biomass generated by the oil palm industry can be harnessed for conversion into
aviation biofuel. Palm oil makes up only 10 % of the biomass produced by the oil
palm tree. The remaining 90% (dry weight basis) can be partly converted into biofuel
using BTL technology or bio-refinery which is being developed rapidly around the

Only palm oil can provide a solution for practical consideration. Other oilseeds
cannot produce the quantities envisaged because of the inherent low yield per
hectare per year of between 5 to 11 times less than that of palm oil.

Figure 1 below shows countries capable of supplying excess vegetable oil into
the world market which are limited to Malaysian and Indonesian palm oil producers.
With doubling of production through productivity and hectarage expansion, and
employing other palm biomass for further conversion into aviation fuel, the availability
could well meet the future target of having 50% blend of biofuel into the aviation
fuel mixture.

Figure 1

Net Importing & Importing Countries for  Oils & Fats

Palm oil meets the certification criteria for sustainability as many producers
in Malaysia have volunteered to participate in the certification schemes and have
obtained their certificates from certifying bodies such as the RSPO and ISCC.
A minor obstacle to the successful implementation of the aviation biofuel plan
is the relatively high cost of biofuel in comparison to petroleum derived aviation
fuel. Lack of an excess supply from other vegetable oils and a high demand for
palm oil for food will cause market forces to price palm oil above petroleum fuel.
Otherwise, palm oil will be burned as fuel. This will ensure that its price will
remain above the price of petroleum fuel and petroleum price will be the floor
price for palm and other vegetable oils.

With the planned expansion of oil palm production, the necessary increase in
supply to meet the needs of the aviation industry can be achieved. The food versus
fuel debate does not apply as the main consideration is which profitable crop
to plant on a scarce available agricultural land (large areas of degraded land
not under forest reserves) where oil palm can be grown. Non-food oil crops such
as jatropha can also be grown on degraded land but it yields only 20 % that of
oil palm and is far more expensive to produce thus making it a much less attractive

Consumers worldwide must be willing to pay the cost to reduce carbon GHG emission
from the aviation industry. Plans by EU to impose carbon tax on the aviation sector
are a step in the right direction. It is imperative that the money raised goes
to compensate farmers who toil to produce the extra supply of raw material for
the aviation fuel industry. Currently, much emphasis has been placed on the certification
process for sustainability that the administrative charge consumes up to 80% of
the money raised to incentivize the production of renewable biofuel. Ironically,
the cost for employing auditors and paying for membership fee of certification
bodies is more than the rate of compulsory research funding imposed on the Malaysian
palm oil industry!

New opportunities for an increased supply of palm oil based aviation biofuel
can be realised through more research and allocation of funds. However, if the
cost of certification is higher than the investment in research, and if the carbon
tax benefits only the bureaucracy, this will result in a slow development of aviation
biofuel from oil palm sources. Development of aviation biofuel from other vegetable
oils will be next to impossible. Oil palm is the only viable solution in the long

The choice is limited for the aviation industry. It cannot harness hydro, wind
or solar power to fly jet planes. Most other plant biomass has low output to input
energy ratio of 3:1 compared to 9:1 for oil palm. Oil palm is the best and only
choice so far until miracles occur or algae technology becomes successful. Even
petroleum fuel is not the most viable choice in the long term; its supply is finite
and the topping point curve (Fig 2) shows that supply will start to decline in
a few years from its peak. By then almost everything will be expensive except
sustainably produced raw materials such as palm oil if future development in production
capacity is well planned with adequate upfront investment in R & D.


see also


New study by Leicester University suggests EU biofuels are as carbon intensive
as petrol

Date Added: 5th November 2011

The new study was conducted for the International Council on Clean Transportation,
an international think tank that wished to assess the greenhouse gas emissions
associated with biodiesel production. Biodiesel mandates increase palm oil demand,
and more is now being imported by the EU from Indonesia. The study found the scale
of greenhouse gas emissions from oil palm plantations on peat is significantly
higher than previously assumed.

Click here to view full story…